Limitations and Vulnerabilities of LLMs

Penn State University, University of Mississippi Thai Le, Ph.D.

IARPA BENGAL / October 24, 2023

Penn State + U. Mississippi

- Looking for a BEGAL team to collaborate with!
- PIs with 16 Ph.D. students (11@PSU, 5@UM) and National Research Lab
 - https://pike.psu.edu/, https://lethaiq.github.io/,
- Active research in Data Science and AI areas
- # pubs in top CS venues for last 3 years
 - AI: AAAI (6), AAMAS (2)
 - NLP: ACL (3), EMNLP (6), NAACL (1)
 - DS: KDD (6), ICDM (4), ICDE (1)
 - Web/IR: WWW (4), CIKM (4), SIGIR (1)
 - HCI: CHI (2), CSCW (1), ICWSM (4)

Team's Expertise

 TuringBench (EMNLP'20, 21), MULTITuDE (EMNLP'23), Hansen (EMNLP'23): benchmark environments to study neural authorship attribution problem in both written and spoken texts and *multilingual* neural text detection

					_	0	0	60°E 1	.20°E
AA Model	Р	R	F1	Accuracy		10	1 R		Train
Random Forest	0.5893	0.6053	0.5847	0.6147	- 60°N	di la	The state of the s		5
SVM (3-grams)	0.7124	0.7223	0.7149	0.7299		24		22 -	
WriteprintsRFC	0.4578	0.4851	0.4651	0.4943		🧧	- Ale	8	55 A
OpenAI detector	0.7810	0.7812	0.7741	0.7873	30°N	<i>_</i>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	to and the second	2 m
Syntax-CNN	0.6520	0.6544	0.6480	0.6613		6		> Y Mys	2
N-gram CNN	0.6909	0.6832	0.6665	0.6914	0°		3,	7 4 5	323
N-gram LSTM-LSTM	0.6694	0.6824	0.6646	0.6898	Ũ		$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$	A State	
BertAA	0.7796	0.7750	0.7758	0.7812				A	
BERT-Multinomial	0.8031	0.8021	<u>0.7996</u>	<u>0.8078</u>	-	Frain	Test: en	Test: non-en	Difference
RoBERTa-Multinomial	0.8214	0.8126	0.8107	0.8173		en en	0.9292	0.6903	↓ 25.7%
									•

Team's Expertise

- Human Detection of LLM texts (нсомр'23): human evaluation of neural text detection
- Fighting Fire with Fire (ЕМNLP'23): crafting and detecting misinformation with LLMs
- **Do Language Models Plagiarize?** (www'23): investigating plagiarism behaviors of LLMs
- UPTON (EMNLP'23): privacy leakage of human identities from LLMs trained on social media
- SHIELD, ANTHRO, CrypText, NoisyHate (ACL'22, ICDE'23): attacking and defending LLMs against machinegenerated and human-written perturbations in the wild

Contact Info

Dongwon Lee (PSU)

- https://pike.psu.edu/
- dongwon@psu.edu

• Thai Le (UMississippi)

- https://lethaiq.github.io/tql3/
- thaile@olemiss.edu

