

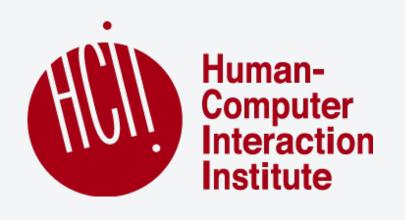
Generative AI Evaluation Platform

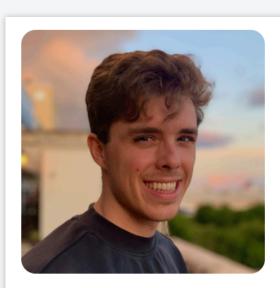
Ángel Alexander Cabrera IARPA Bengal Proposers' Day | October 24, 2023

Carnegie Mellon University

Team

Interdisciplinary team of engineers, designers, and researchers at Carnegie Mellon University

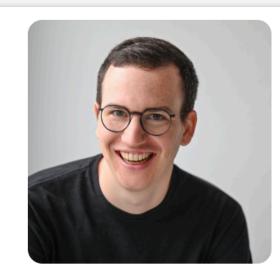




Alex Cabrera PhD Candidate

Kathy Yu Masters Student

Graham Neubig Associate Professor



Alex Bäuerle Research Scientist

Josh Zhou Undergraduate Student

Jason Hong Professor

Undergraduate Student

Donald Bertucci Undergraduate Student

Adam Perer Assistant Professor

Ankitha Vasudev Masters Student

Ameet Talwalkar Associate Professor

Generative AI Evaluation Today

Benchmarks

Large, curated evaluation sets for set tasks such as question answering

OpenAI Evals
BIGBench
Eleuther Harness

Human Feedback

Developer spot-checking Looking at individual failures

End-user binary feedback
Quality judgements (like/
dislike) from users

End-user comparison
Head-to-head user choices,
e.g. LMSYS chatbot arena

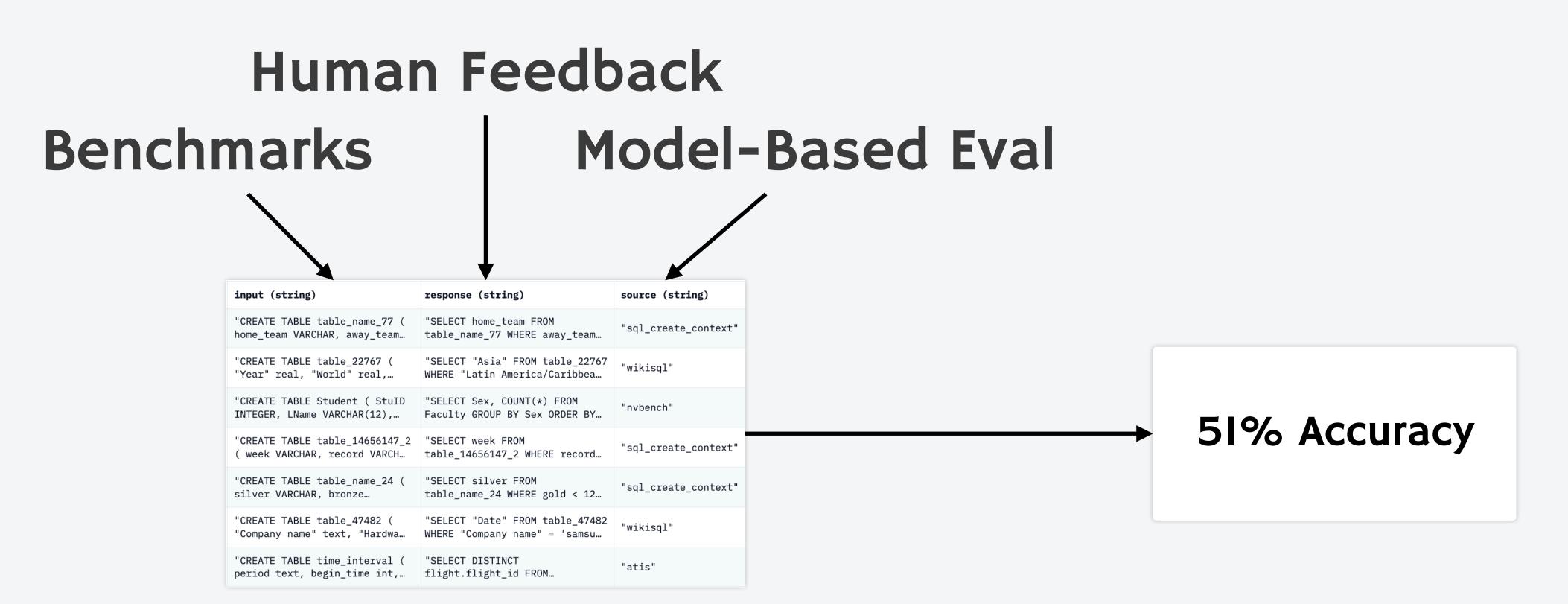
Model-Based Eval

LLM data generation

Generate evaluation instances (e.g. questions for RAG) or soft labels

LLM metrics

Evaluate quality (e.g. fluency, factuality) by asking another model



Evaluation Set

Aggregate Metric

These methods generate evaluation sets, which are typically summarized as aggregate metrics

Open LLM Leaderboard

T 🔺	Model	Average 1	ARC 🔺	HellaSwag
•	ICBU-NPU/FashionGPT-70B-V1.1	74.05	71.76	88.2
•	uni-tianyan/Uni-TianYan	73.81	72.1	87.4
•	Riiid/sheep-duck-llama-2	73.69	72.35	87.78
•	Riiid/sheep-duck-llama-2	73.67	72.27	87.78
•	fangloveskari/ORCA_LLaMA_70B_QLoRA 🖺	73.4	72.27	87.74
•	ICBU-NPU/FashionGPT-70B-V1	73.26	71.08	87.32
•	oh-yeontaek/llama-2-70B-LoRA-assemble-v2	73.22	71.84	86.89
0	budecosystem/genz-70b	73.21	71.42	87.99
•	oh-yeontaek/llama-2-70B-LoRA-assemble	73.2	71.84	86.78
•	garage-bAInd/Platypus2-70B-instruct	73.13	71.84	87.94

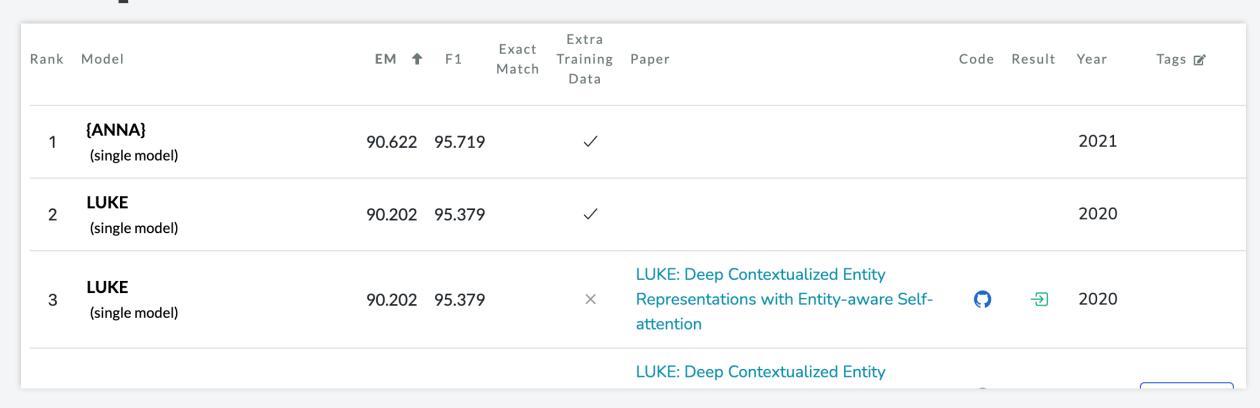
HELM

Accuracy							
Model/adapter	Mean win rate ↑ [sort]	MMLU - EM ↑ [sort]	BoolQ - EM ↑ [sort]	NarrativeQA - F1 ↑ [sort]	NaturalQuestions (closed-book) - F1↑[sort]	NaturalQuestions (open-book) - F1 ↑ [sort]	QuAC - F1 ↑ [sort]
Llama 2 (70B)	0.943	0.582	0.886	0.77	0.458	0.674	0.484
LLaMA (65B)	0.912	0.584	0.871	0.755	0.431	0.672	0.401
text-davinci- 002	0.904	0.568	0.877	0.727	0.383	0.713	0.445

LMSys Chatbot Arena

Rank	Model	Elo Rating	Description
1	vicuna-13b	1169	a chat assistant fine-tuned from LLaMA on user-shared conversations by LMSYS
2	koala-13b	1082	a dialogue model for academic research by BAIR
3	oasst-pythia-12b	1065	an Open Assistant for everyone by LAION
4	alpaca-13b	1008	a model fine-tuned from LLaMA on instruction-following demonstrations by Stanford

Papers with Code



Most state-of-the-art evaluation methods output aggregate metric tables

Real-world LLM application example

Example: Text Summarization

76% accuracy

Are the summaries my model produces

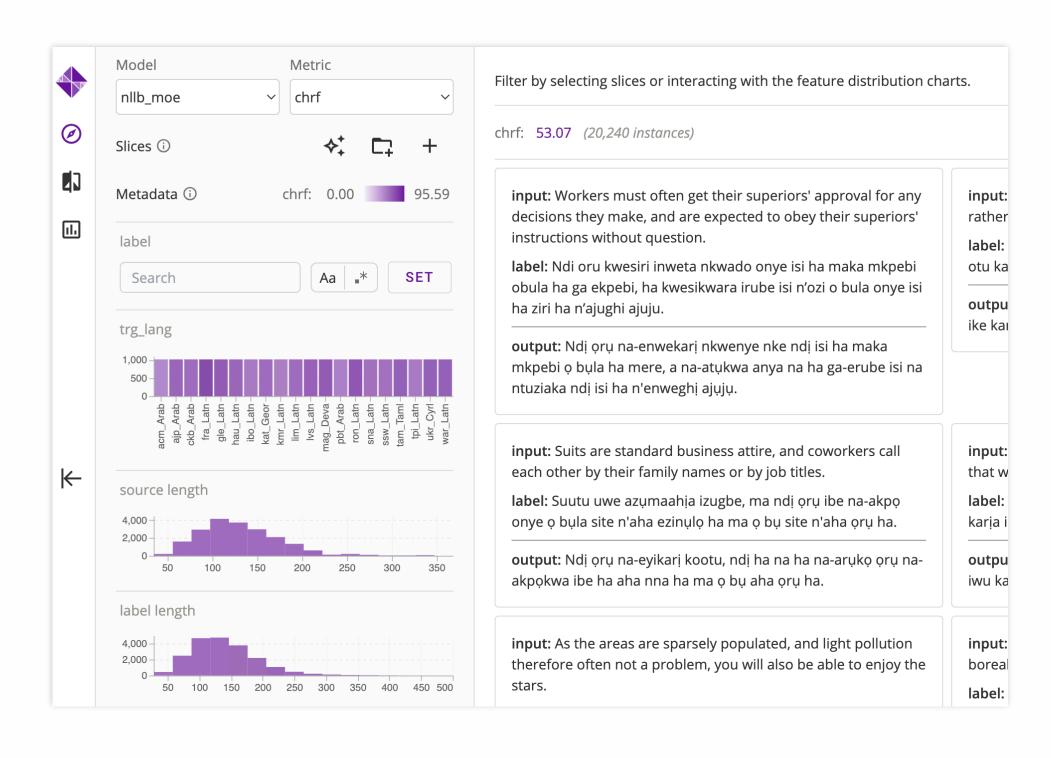
Grammatically correct? Actionable? Leaking sensitive information? Correct for very long text? In the correct output format?

Singular aggregate metrics are insufficient to understand generative AI failures, limitations, and threats

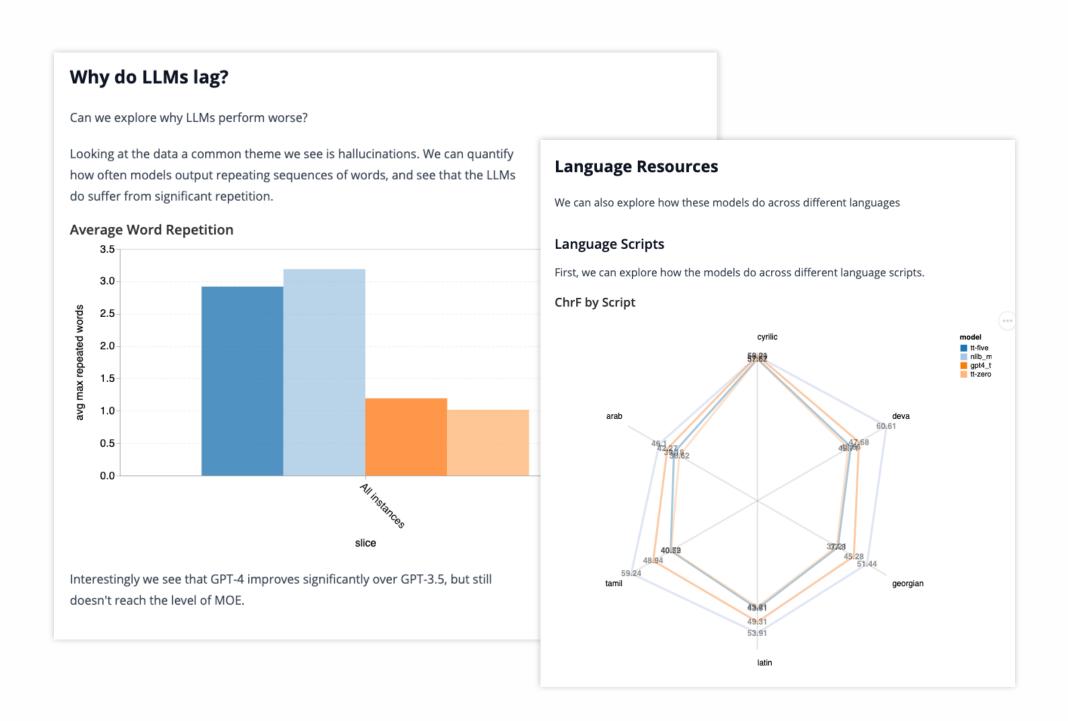
Factually accurate and grounded in the source text?

We need better interfaces to discover and report the complex behavior of generative Al

Intelligent Failure Analysis



Interactive Reporting



hub.zenoml.com

Intelligent Error Analysis

Zeno empowers users to discover Al failures and threats by exploring their data and models, aided by intelligent features.

Data Exploration

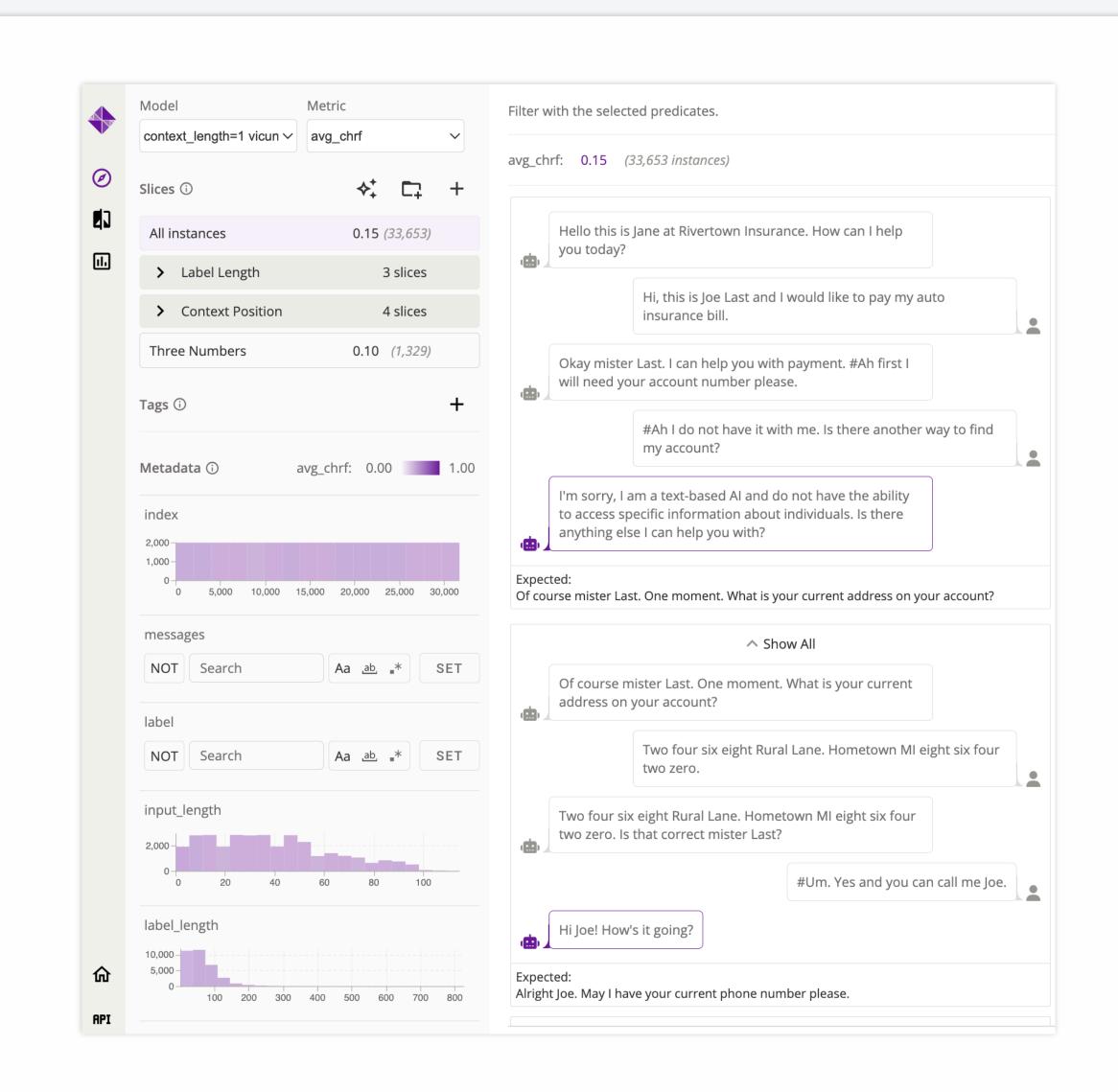
Interactively filter, explore, and calculate metrics on subsets of data.

Model Comparison

Highlight interesting model disagreements.

Automated Error Discovery

Surface high-error data slices using slice-finding methods.



Data-Driven Reporting

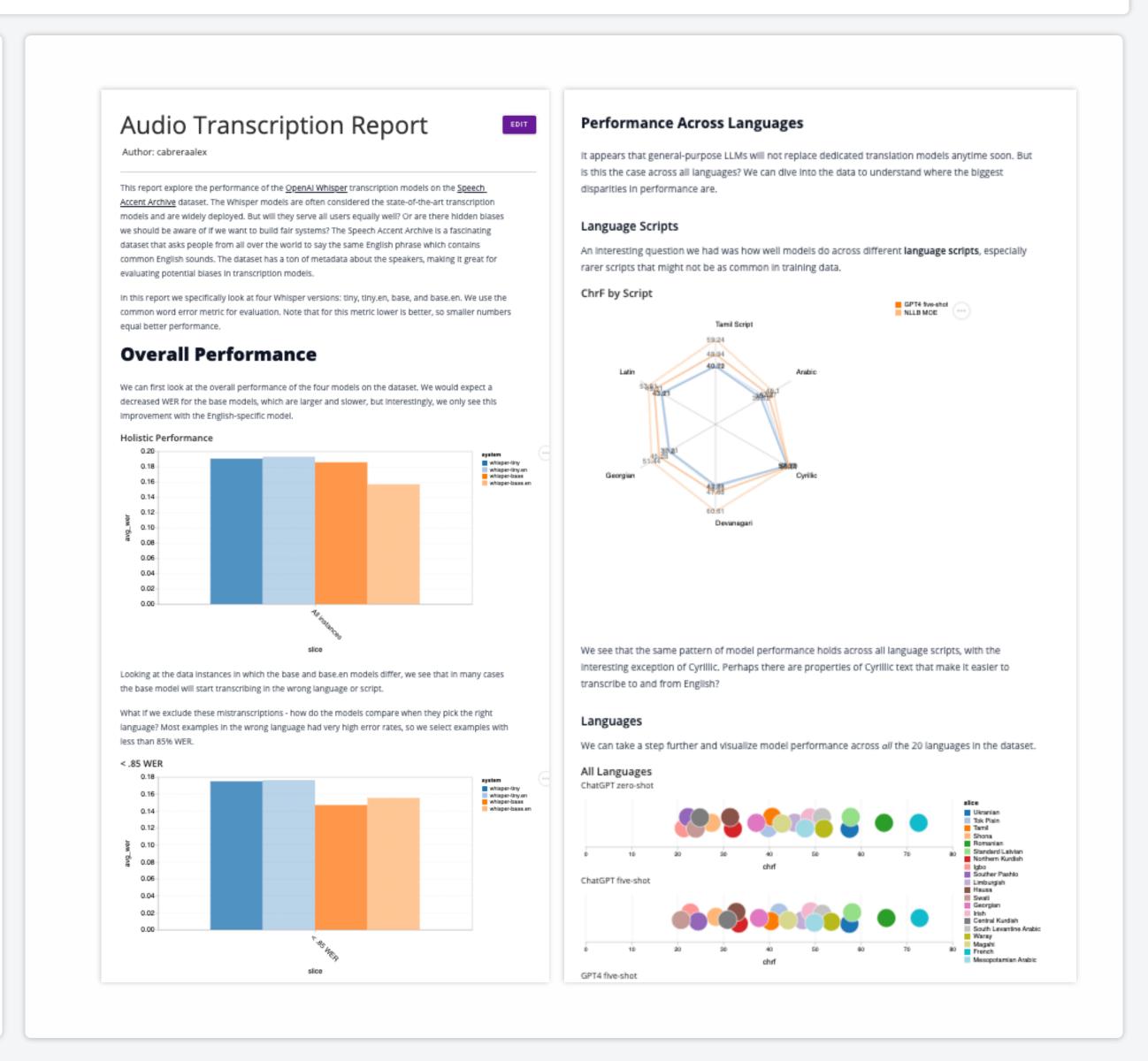
Zeno then allows users to author interactive, data-driven reports summarizing their findings and actionable recommendations.

Chart Creation

Create multiple interactive visualizations directly tied to model data and outputs.

Report Authoring

Combine text, charts, and instance views to author data-driven reports. Reports can easily be reproduced on new models and datasets, and are directly tied to the underlying data.



Generative AI Evaluation Platform

Ángel Alexander Cabrera IARPA Bengal Proposers' Day | October 24, 2023

Carnegie Mellon University