

Exploiting Plasma Properties to Detect Small (Sub 10 cm) Orbital Debris

Bill Amatucci

Plasma Physics Division, Naval Research Laboratory, Washington DC

IARPA SINTRA Proposer's Day, Arlington, VA

August 10, 2022

DISTRIBUTION A. Approved for public release. Distribution unlimited.

Laboratory Investigation of Precursor Solitons: NRL Space Physics Simulation Chamber

NRL Space Physics Simulation Chamber (SPSC). Scaled near-Earth space-like plasmas are created in the SPSC's 5-m long by 1.8-m diameter main chamber and 2-m long by 0.55-m diameter source chamber. Independently controllable electromagnets allow for control of the shape of the axial magnetic field.

Space Plasma - Space Chamber Parameter Comparison

parameter	ionosphere	RB (L = 2)	NRL SPSC
plasma density (cm ⁻³)	10 ³ – 10 ⁶	~10 ³	10 ⁴ – 10 ¹²
electron temp. (eV)	~0.3	~1	0.1 – 4
ion temp. (eV)	~0.3	0.3	0.05
magnetic field strength (G)	~0.3	~0.04	up to 750 G (SC) & 250 G (MC)
plasma frequency (Hz)	10 ⁵ - 10 ⁷	5×10^5	10 ⁶ – 10 ¹⁰
ion gyrofrequency (Hz)	~30 (O+)	~60 (H+)	~10 ³ - 10 ⁵ (Ar+)
electron gyrofrequency (Hz)	~10 ⁶	~10 ⁵	10 ⁶ – 10 ⁹
$\omega_{\rm pe}/\Omega_{\rm e}$	0.1 – 10	~5	0.01 - 50
ω/v _{en}	> 1	>> 1	~5 - 600
β	10 ⁻⁷ – 10 ⁻⁴	10 ⁻⁵	10 ⁻⁷ – 10 ⁻³

Laboratory Investigation of Precursor Solitons: Basic Plasma Column Configuration

U.S.NAVAL

RESEARCH LABORATORY

The NRL Space Chamber plasma is ~1-m dia × 5-m long, surrounded by ~0.5-m vacuum gap to minimize boundary effects.

The axial magnetic field is created by 12 independent, water-cooled electromagnets.

Laboratory Investigation of Precursor Solitons: Technique for Supersonic Flow Generation

U.S.NAVAL

Laboratory Investigation of Precursor Solitons: U.S. NAVAL **Creation and Control of the Radial Plasma Potential Profile** RESEARCH ABORATOR biasable ring electrodes plasma source ●B **Biasing rings** allows for control of the radial profile of the plasma V_p bias power supplies potential.

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited

Laboratory Investigation of Precursor Solitons: Creation and Control of Transverse Electric Field

U.S. NAVAL

Laboratory Investigation of Precursor Solitons: Generation of Supersonic Plasma Flow

U.S. NAVAL

Laboratory Investigation of Precursor Solitons: Generation of Supersonic Plasma Flow

U.S. NAVAL

Laboratory Investigation of Precursor Solitons: Charged Debris Object Generates Solitons

• The solitons are characterized by the Space Chamber plasma diagnostic tools.

Laboratory Investigation of Precursor Solitons: Remote Detection of Precursor Solitons

U.S. NAVAL

RESEARCH

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

Relevant References

- 1. A. Sen, S. Tiwari, S. Mishra, and P. Kaw, Advances in Space Research, 56, 429 (2015).
- 2. S. Jaiswal, P. Bandyopadhyay, and A. Sen, *Phys. Rev. E*, **93**, 041201(R) (2016).
- 3. S. K. Tiwari and A. Sen, *Physics of Plasmas*, **23**, 022301 (2016).
- 4. S. K. Tiwari and A. Sen, *Physics of Plasmas*, **23**, 100705 (2016), https://doi.org/10.1063/1.4964908.
- 5. G. Arora, P. Bandyopadhyay, M. G. Hariprasad, and A. Sen, *Physics of Plasmas*, **26**, 093701 (2019), <u>https://doi.org/10.1063/1.5115313</u>.
- 6. Alexis S. Truitt and Christine M. Hartzell, First Int'l. Orbital Debris Conf., 6035, (2019)
- 7. A. S. Truitt and C. M. Hartzell, *Journal of Spacecraft and Rockets*, **57**, 876 (2020), https://doi.org/10.2514/1.A34652
- 8. A. Kumar and A. Sen, New Journal of Physics, 22, 073057 (2020).
- 9. G. Arora, P. Bandyopadhyay, M. G. Hariprasad, and A. Sen, *Phys. Rev. E*, **103**, 013201, (2021)
- 10. A. Sen, A. Kumar, S. Yadav, G. Ganguli, and C. Crabtree, 2021 International Conference on Electromagnetics in Advanced Applications (ICEAA), Honolulu, Hawaii, U.S.A., 09 -13 August 2021, 32 (2021)
- 11. Abhijit Sen, Rupak Mukherjee, Sharad K. Yadav, Chris Crabtree, and Gurudas Ganguli, Electromagnetic Pinned Solitons for Space Debris Detection, *Phys Plasmas*, (to be submitted 2022)