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GPU FOR TIME-VARYING PITMAN-YOR PROCESSES

Figure 11: T cells are numerous, and hard to detect due to low contrast images (a). For a sin-
gle frame, ground-truth bounding boxes are overlaid in (b), and inferred detection and
tracking results are overlaid in (c). A histogram showing the posterior distribution over
the total number of cells is shown in (e). The SFDA and ATA for the detection-free com-
parison methods are shown in (f). Inferred cell positions (unsupervised) were used to
automatically train an SVM for supervised cell detection; SVM detected cell positions
for a single frame are shown in (d).

on the fly, which could be taken and used in other vision applications, without needing an explicit
predefined algorithm for object detection.

6. Discussion

In this article, we have presented a class of first-order stationary Pitman-Yor processes for time-
varying density estimation and clustering. These models are based on a simple generalized Pólya
urn sampling scheme whose validity follows from the consistence properties under specific deletion
rules of the two-parameter Ewens sampling formula. We have proposed sequential Monte Carlo
methods to fit these models and have demonstrated them on several applications. The model pro-
posed in the present paper has also been successfully applied to dynamic spike sorting (Gasthaus
et al., 2008) and to cell fluorescent microscopic imaging tracking (Ji and West, 2009).

There are numerous potential extensions to this work. We have focused on specifying directly
the marginal distribution of the allocation variables, the underlying infinite-dimensional process
{Gt} being integrated out. This has allowed us to develop intuitive models and simple algorithms
to fit them. However, it would be interesting to explore whether it is possible to obtain an explicit
representation for {Gt} and whether this can be related to the class of models recently proposed
in (Griffin, 2007).

The uniform and deterministic deletion steps can be applied to any hierarchical model, as long as
the predictive distribution is known. We could therefore develop time-varying versions of exchange-
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