

SoURCE CODE (Securing our Underlying Resource in Cyber Environments) Proposers' Day

Kristopher W. Reese, PhD | Program Manager | Oct. 5, 2023

Intelligence Advanced Research Projects Activity

LARPA Creating Advantage through Research and Technology

Thank you for your interest in this program and participating in this event

To assure a clear broadcast stream, audio and video are disabled for meeting participants

Comments and questions can be submitted to the IARPA team via the WebEx chat tool submission or via index cards for in-person attendees

• Please direct questions to "All Panelists" in the chat if you are virtual

Questions submitted to the alias (<u>dni-SoURCE-CODE-proposers-</u> <u>day@iarpa.gov</u>) prior to this meeting and during this presentation, and corresponding answers, may be posted in writing online

- This presentation is provided solely for information and planning purposes
- The Proposers' Day does not constitute a formal solicitation for proposals or proposal abstracts
- Nothing said at Proposers' Day changes the requirements set forth in a BAA
- The BAA language supersedes anything presented or said by IARPA at the Proposers' Day
- This meeting is being recorded and will be posted for public viewing
- For those viewing the recording, email aliases and POCs may be dated, please refer to IARPA.gov for updated information.

Proposers' Day Goals

- 1. Familiarize participants with IARPA's interest in the SoURCE CODE program and solicit questions and feedback
- 2. Foster discussion of complementary capabilities among potential program participants, i.e., TEAMING
 - Teaming information can be found at the following address: <u>https://www.iarpa.gov/research-programs/source-code</u>
 - An attendance list, with contact information of participants who approved of sharing will be distributed soon
 - The chat feature is enabled for participants to plan future discussions associated with teaming
 - Teaming interests, capability summaries, and lightning talk slides will be posted publicly on the IARPA SoURCE CODE webpage until the BAA submission period closes

Please ask questions and provide feedback, this is your chance to alter the course of events. Please talk with others, find great team members.

Teaming

- Participants are encouraged to find partners and collaborators . . . someone might have a missing piece of your puzzle.
- Lightning talks will take place following the Program presentations.
- Collaborating and capability summaries will be accepted, with minimal review for appropriateness, and made available to the public.
 - Teaming documents and summaries can be submitted until the BAA closes, submit to <u>dni-SoURCE-CODE-proposers-day@iarpa.gov</u>.
 - If you would prefer your information not be shared (any recorded videos cannot be modified or removed) email dni-iarpa-source-code-proposersday@iarpa.gov.

- Questions can be submitted **until 11:00am ET**.
- There will be a break after the contracting presentation at 11:00am ET.
- Responses to selected questions will be broadcast at 12:30pm ET, so please don't log out or close your WebEx connection.
 - All programmatic and contractual questions will be captured but will not be answered in this session
- Feedback (but not questions) about the draft technical section may be submitted to the IARPA team email at <u>dni-SoURCE-CODE-proposers-day@iarpa.gov</u>.
 - A new alias will be established when the full BAA is released
- After this Proposers' Day, IARPA will review all the feedback received for a final BAA to be posted on SAM.gov.

Agenda

Time	Торіс	Speaker
9:30am-9:40am	Welcome, Logistics, Proposers' Day Goals	Kristopher W. Reese, Program Manager
9:40am-9:50am	IARPA Overview	Robert Rahmer, Director Office of Analysis Research, IARPA
9:50am-10:40am	SoURCE CODE Program Overview	Kristopher W. Reese
10:40am-11:00am	Contracting Overview	TBD
11:00am-12:30pm	Break (Submit questions in chat or drop boxes before 11:00am)	
12:30pm-1:30pm	Answers to Selected Technical Questions	Kristopher W. Reese
1:30pm-1:35pm	Introductions to Lightning Talks	Kristopher W. Reese
1:35pm-4:25pm (est.)	Lightning Talks	Potential Performers
4:25pm-5:30pm	Informal Teaming Discussions*	In-Person Participants
	*The Government will not attend these events	

LIGHTNING TALKS AGENDA

Time	Speaker	Institution	In person
1:35pm-1:40pm	Xiangyu Zhang / Lin Tan	Purdue	Yes
1:40pm-1:45pm	Kexin Pei	University of Chicago	Yes
1:45pm-1:50pm	Michael V Le	IBM	Yes
1:50pm-1:55pm	Mike Murphy	SimSpace	Yes
1:55pm-2:00pm	Shiqing Ma	UMASS Amherst	Yes
2:00pm-2:05pm	William Liu	CACI	Yes
2:05pm-2:10pm	Sheikh Rabiul Islam	Rutgers University - Camden	Yes
2:10pm-2:15pm	Andrew Hendela	Karambit.Al	Yes
2:15pm-2:20pm	Aleksey Nogin	Red Balloon Security	Virtual

LIGHTNING TALKS AGENDA CONTINUED

Time	Speaker	Institution	In person
2:20pm-2:25pm	Thomas Wahl	GrammaTech	Yes
2:25pm-2:30pm	Dan Thomsen	SIFT	Virtual
2:30pm-2:35pm	Nathan Clark	Noblis	Yes
2:35pm-2:40pm	Chris Taylor	Tactical Computing Labs	Yes
2:40pm-2:45pm	Tomas Pevny	Czech Technical University in Prague	Virtual

Break and Informal Teaming Discussion at end of talks.

IARPA Overview

Robert Rahmer | Director, IARPA Office of Analysis | SoURCE CODE Proposers' Day | Oct. 5, 2023

Intelligence Advanced Research Projects Activity

LARPA Creating Advantage through Research and Technology

Office of the Director of National Intelligence

INTELLIGENCE ADVANCED RESEARCH PROJECTS ACTIVITY (IARPA)

IARPA Mission

IARPA envisions and leads high-risk, high-payoff research that delivers innovative technology for future overwhelming intelligence advantage

- Our problems are **complex** and **multidisciplinary**
- We emphasize technical excellence & technical truth

• Bring the best minds to bear on our problems

- Full and open competition to the greatest possible extent
- World-class, term-limited Program Managers

• Define and execute research programs that:

- Have goals that are clear, ambitious, credible and measurable
- Run from three to five years
- Publish peer-reviewed results and data, to the greatest possible extent
- Employ independent and rigorous Test & Evaluation
- Involve IC partners from start to finish
- Transition new capabilities to intelligence community partners

IARPA R&D

- Technical <u>and</u> programmatic excellence are required
- Each program has a clearly defined and measurable end-goal
 - Intermediate milestones to measure progress are also required
 - Every program has a beginning and an end
- This approach, coupled with term-limited PM positions, ensures
 - IARPA does not "institutionalize" programs
 - Fresh ideas and perspectives are always coming in
 - Status quo is always questioned
 - Only the best ideas are pursued, and only the best performers are funded

IARPA's research portfolio is diverse, including math, physics, chemistry, biology, microelectronics, neuroscience, linguistics, political science, cognitive psychology, and more.

- 70% of completed research transitions to U.S. Government partners
- 3,000+ journal articles published
- IARPA funded researchers have been awarded the Nobel Prize in Physics for quantum computing research, a MacArthur Fellowship, and a Bell prize
- IARPA serves on National Science and Technology Council (NSTC) committees and actively engages with the White House BRAIN Initiative, National Strategic Computing Initiative, and the NSTC Select Committee on Artificial Intelligence, the NSTC Subcommittee on Quantum Information Science (SCQIS), and NSTC Subcommittee on Economic and Security Implications of Quantum Science (ESIX)

How to Engage with IARPA

ENGAGE WITH US

Throughout our website you can learn more about engaging with us on our highly innovative work that is having a positive impact in the Intelligence Community and society in general. Click on any of the below links to learn more.

iarpa.gov | 301-243-1995

dni-iarpa-info@iarpa.gov

- Reach out to our Program Managers.
- Schedule a visit if you are in the DC area or invite us to visit you

Open BAAs

Broad Agency Announcements (BAAs) solicit research proposals for specific programs. Learn more about current BAA opportunities and ways to get involved...

Requests For Information

Requests for Information (RFIs) are designed to gather more information on an idea in an area in which our program managers are not fully informed...

Seedlings

Seedlings are typically 9 – 12 month research efforts that are less than \$1M in cost. They are intended to address highly innovative ideas and concepts within...

Source Code Overview

Kristopher W. Reese, PhD | Program Manager | Oct. 5, 2023

Intelligence Advanced Research Projects Activity

LARPA Creating Advantage through Research and Technology

SoURCE CODE Program Goals

SoURCE CODE seeks to create automated, scientifically validated forensic similarity and demographic analytic technologies

 Measure similarity of code and binaries and identify components that may analyze hidden demographic information.

(U) Source code will improve forensic capabilities and speed up threat intelligence analytics!

Image is UNCLASSIFIED

- Current methods are highly manual, requiring substantial human expertise, training, and time to conduct forensic analysis of code.
 - Prior automated attempts leverage a small subset of static analysis features Lexical and syntactic.
- Executable binaries and corresponding source code include numerous other features that can measure similarity, and thereby assist in attribution and demographic analytics.
- SoURCE CODE will develop capabilities to use the full feature space to measure similarity, especially between source code and binaries

(U) The full feature set of source code and binary features are an untapped resource for forensic capabilities.

Why is Attribution important?

- 0 >

Similarity and Demographic traits can play a role in attributing the increasing number of attacks around the world.

[5]

The Diamond Model of Forensic Attribution

SoURCE CODE will create similarity and demographic analytics to automate the "Attacker-Capability" edge.

Image modeled after original research paper [38]

Image is UNCLASSIFIED

Technical Areas

Intelligence Advanced Research Projects Activity

I A R P A Creating Advantage through Research and Technology

SoURCE CODE seeks to utilize the full feature set (focus area) to measure source code and binary similarity and demographic attributes (e.g. Country, Group, individual).

TA1: Measuring Similarity and Demographic Analytics

INNOVATIONS REQUIRED

- 1. Identify and map salient features in both binaries and/or source code that capture author style.
- 2. Identify and implement algorithms, or ensembles, that can effectively utilize authorship features to measure similarity and identify most likely author(s)
 - a) **PHASE 1:** binary to binary, source code to source code
 - b) PHASE 2: binary to source code, source code to binary
- 3. Explain similarity score / decision process to forensic experts to assist in making final attribution decisions.

Subset of Binary Features for Forensic Analysis

			~ 1
	Code Properties	Examples	
	Instruction	Byte level n-grams	
		ldioms	
		Instruction Summary Graphlets	
		SuperGraphlets	
Disassamhlad	Control Flow	Instruction Summary Graphlets	
Disassembleu		SuperGraphlets	L1:
		Call Graphlets	
	External	Call Graphlets	L2:
		Library Calls	
	Lexical	Word Unigrams:	
		 Integer types 	
		 Names of library functions 	
		 Names of Internal functions (when symbol information is available) 	
Decompiled	Syntactic	Fuzzy Abstract Syntax Trees	
		 AST n-grams 	Deco
		 Labeled AST edges 	ore
		AST Node TF-IDF	are si
		 AST Node Ava. depth 	

$u_1 = (push ebp | * | mov esp,ebp)$

Example 1: Code Idioms

Example 2: Graphlets

Images screen captured from original research paper [21]

All images are UNCLASSIFIED

Decompiled features are similar to source code features

There are limited features in this space, and a complete exploration of possible features needs to be conducted – including learned features!

Subset of Source Code Features

Feature Type	Examples			
	Lines of Code			
	Operands			
	Variables			
Lexical	Spaces			
	Word n-grams			
	Char n-grams			
	Function names			
	Average function size			
	Special Macros			
	Data Structure choice			
Syntactic	Control Structure choice			
	Input Statements			
	Conditional Statements			
	Assignment Statements			
	Loops			
	Dataflow analysis			
Semantic	Control flow analysis			
	Algorithms implemented			
	Procedure-dependent analysis			
	System calls			
	Files accessed			
Robavioral	Created mutex			
Denavioral	Visited URLs			
	Dynamic values			
	Network connections			
	Log file strings			
App-dependent	Error message file strings			
	Property file strings			

Current source code Authorship systems largely exploit Lexical and Syntactic structures, limiting forensic applications to unobfuscated / de-linted code

Source code seeks to exploit the full feature set!

All images are UNCLASSIFIED

25

Notional Similarity Matching

Notional Demographic Analytics

27

INTELLIGENCE ADVANCED RESEARCH PROJECTS ACTIVITY (IARPA)

- The following scientific gaps in authorship attribution of source code / binaries have been identified as being underexplored in literature, and may impact features identified making authorship determination more difficult:
 - Codebases vs a single Individual's code
 - Understanding the impact and influences of Project Domains: e.g. Android vs. iOS vs. Windows vs. Linux
 - Understanding the impact and influences of specific development tools
 - Integrated Development Environments
 - Version Control Systems
 - Compiler, Build Environment, and Deployment tools
 - Impact of project naming conventions, company style guides, etc.

These gaps highlights the need for understanding the impact of standard coding practices over educational coding practices!

Source Code Program Phases

Intelligence Advanced Research Projects Activity

LARPA Creating Advantage through Research and Technology

SoURCE CODE Program Schedule

			Phase 1							Phase 2																					
Task	# Mo.	1	2	3	4	- 5	6	7	8	9	10	11	12	13	3 14	1 15	5 16	51	7 18	1	2	3	4	5	6	7	8	9	10) 11	12
Kickoff	-	\star																		\star											
TA1: Feature Space	30			-					×		-		X	_					-	-	-	г Т			_						
TA1: Similarity	30		-		-		i 		×				X		-	_						-	-			i 1				F	
PI Virtual Meetings / Calls																															
PI Workshop (in-person)	-								×								*										×				
Site Meetings	-					٢							×	-									×								
Program Closeout	-																														×

★ Milestone Deliverables

Image is UNCLASSIFIED

SoURCE CODE Phases

Phase 1

C++

Rust

- Phase 1 programming languages pending – subject to data availability.
- Phase 2 programming languages subject to data availability
- Potential Proposers' can offer potential datasets
 - Proprietary Datasets cannot be approved unless they can be shared with all potential performers on the overall program or purchased for research purposes.

Possible Datasets – Source Code

- Google Code Jam:
 - Datasets from 2008-2020 competitions
 - Contains Author data as ground truth
 - No binaries Can compile with different build environments
- Other Coding Competitions:
 - Codeforces.com (Russian-based; Coding Competitions)
 - Topcoders (US-based; Coding Competitions)
- Other datasets identified from RFI will be checked by T&E

(U) These competition datasets act as surrogates for Malware, but they do not represent Malware source code!

- APTClass [31]
 - One of the Largest ground-truth datasets (15,000 samples)
 - Need to Request Access to download (UK University)
 - Data Sources / Ground Truth:

SourceName	Last Updated
MISP [32]	Oct. 2020
APT Operation Tracker [33]	Oct. 2020
MITRE ATT&CK [34]	Oct. 2020
sapphirex00 [35]	Nov. 2018
Thailand CERT [36]	Oct. 2020
Council on Foreign Relations [37]	Oct. 2020

Other datasets identified from RFI will be checked by T&E

Evaluation and Metrics

Intelligence Advanced Research Projects Activity

LARPA Creating Advantage through Research and Technology

Robust, independent test and evaluation is a crucial part of every IARPA program

• For SoURCE CODE, T&E will be responsible for providing data and product evaluation.

Performer systems will be executed by T&E on stand alone systems / networks

- Specifications of the SoURCE CODE Test System will be provided at a later date
- SoURCE CODE anticipates using multiple T&E teams for various aspects of the overall program.

TA1 – Testing and Evaluation Plan

INTELLIGENCE ADVANCED RESEARCH PROJECTS ACTIVITY (IARPA)

TA1 Metrics: Similarity Task Metrics

	Phase I	Phase II
Top-1 Accuracy [100/10,000]	85% [95/75]	90% [98/90]
Top-10 Accuracy [100/10,000]	95% [99/85]	96% [99/95]
EER Average	30%	20%
d' (sensitivity index)	Measured	increase 30%
Attribution methods (data permitting)	Source \rightarrow Source, Binary \rightarrow Binary	Source \rightarrow Binary, Binary \rightarrow Source

Metrics shown are for 1000 unique authors and should scale to match cardinality of unique users – additional numbers shown for 100 / 10,000 authors in brackets.

Additional metrics will also be measured to better understand the efficacy of the algorithms:

- Precision
- Specificity
- FAR/TAR

FRR/TRR

Detection Error Tradeoff / Receiver Operator Curve

TABLE is UNCLASSIFIED

(IARPA)

TA1 Metrics: Demographic Analytic Metrics

	Phase I	Phase II
Top-1 Accuracy [100/10,000]	85% [95/75]	90% [98/90]
Top-10 Accuracy [100/10,000]	95% [99/85]	96% [99/95]
EER Average	20%	10%
# Groups/Demographics (data permitting)	50	70+
Type of Set	Closed	Open

Additional metrics will also be measured to better understand the efficacy of the algorithms:

- Precision
- Specificity
- FAR/TAR

FRR/TRR

Detection Error Tradeoff / Receiver Operator Curve

TABLE is UNCLASSIFIED

		Actual						
		Positive	Negative					
icted	Positive	True Positive (TAR)	False Positive (FAR)					
Pred	Negative	False Negative (FRR)	True Negative (TRR)					

 $Accuracy = \frac{TP + TN}{TP + TN + FP + FN} \qquad \text{Recall} = \frac{TP}{TP + FN}$ $Precision = \frac{TP}{TP + FP} \qquad Specificity = \frac{TN}{TN + FP}$

(Recall is best when we don't care about the misclassifications of negative samples).

Binary classification confusion matrix

TP (TAR) – Code sample from Author A matches to Suspect Author (Author A) **FP (FAR)** – Code sample from Author B matches to Suspect Author (Author A)

- **FN (FRR)** Code sample from Author A does not match Suspect Author (Author A)
- **TN (TRR)** Code sample from Author B does not match Suspect Author (Author A)

EER, ROC, and DET

Equal Error Rate (EER) is the point at which the proportion of the False Acceptance and False Rejection Rates are equal.

At what point do we crossover where code samples match the INCORRECT authors and code samples are rejected from CORRECT authors?

Receiving Operating Characteristic (ROC) shows the probability of detection against the probability of false alarm and helps to identify characteristics of the attribution system.

If we fix rate at which code samples match INCORRECT authors to a specific percentage, what rate will we achieve with correct code samples?

Detection Error Tradeoff (DET) curves map the probability of false alarms against the probability of falsely rejecting a valid author.

If we fix rate at which code samples math INCORRECT authors to a specific percentage, what rejection rate will we achieve with correct code samples?

(U) **d'** is a dimensionless metric indicating the discriminability between two signals – in this case, genuine-imposter scoring from an algorithm's attribution matching.

TA1 – Can we improve the separation between signal distributions of code samples matching correctly (genuine) and code samples matching incorrectly (imposter)

Image is UNCLASSIFIED

41

Feedback, thoughts and comments:

 SoURCE CODE Team Alias: <u>dni-SoURCE-CODE-proposers-</u> <u>day@iarpa.gov</u>

Additional information:

SoURCE CODE website: <u>https://www.iarpa.gov/research-programs/source-code</u>.

