
SoURCE CODE Proposer Day Presentation

Xiangyu Zhang Lin Tan

1

Introduction
• Our group

• Two professors

• Two post-docs and over 20 PhD students

• Our unique expertise related to the program
• Program analysis, including source code, binary code and malware analysis

• Deep Learning in software engineering and software security

• Deep Learning security

• Relevant project experience
• IARPA TrojAI, DARPA VSPELLS, DARPA Transparent Computing, DARPA Binary

Executable Transformation, ONR TPCP, ONR Learn-2-Reason, ONR RHIMES, …

Our Expertise in Binary/Malware Analysis
• Disassembly techniques with SOTA precision and recall

• Probabilistic disassembly (ICSE’19). Code delivered to the Office of Naval Research
• D-ARM: Disassembling ARM Binaries by Lightweight Superset Instruction Interpretation and Graph

Modeling (Oakland’ 23). Code used by DARPA AMP

• Binary reverse engineering and decompilation
• Osprey: Recovery of variable and data structure via probabilistic analysis for stripped binary

(Oakland’21). Code Delivered to the Office of Naval Research
• LmPa: Improving Decompilation by Synergy of Large Language Model and Program Analysis." arXiv

preprint arXiv:2306.02546 (2023)

• Advanced binary analysis engine
• BDA: practical dependence analysis for binary executables by unbiased whole-program path

sampling and per-path abstract interpretation (OOPSLA’19). ACM SIGPLAN Distinguished Paper
Award, Code Delivered to the Office of Naval Research

• Malware analysis that penetrates cloaking techniques and exposes hidden payload
• PMP: Cost-Effective Forced Execution with Probabilistic Memory Pre-Planning, (Oakland 2020).

Code Delivered to the Office of Naval Research

Our Expertise in Code Language Models (CLMs)
and Source Code Analysis

• Code language models on mitigating vulnerabilities and defects.
• Fine-tuning CLMs for fixing security vulnerabilities (ISSTA’23)
• Size-, memory-, and time-efficient (fine-tuned) CLMs for source code (ICSE’23). https://github.com/lin-tan/clm

Code and data released publicly and used by many institutions

• Customized Language Models for Source Code - Code and data released and used by many institutions
• Knowledge-distillation and tree-decoder (ICSE’23) https://github.com/lin-tan/knod
• Pretrained programming language models (ICSE’21) https://github.com/lin-tan/CURE
• Ensemble of context-aware models (ISSTA’20) https://github.com/lin-tan/CoCoNut-Artifact

• Accuracy, fairness, and variance of language models - Code and data released and used by many
institutions

• Accuracy and time (ASE’21) - ACM SIGSOFT Distinguished Paper Award! https://github.com/lin-tan/dl-variance
• Fairness (NeurIPS’21) https://github.com/lin-tan/fairness-variance
• Knowledge-distillation and reverse-engineering (AAAI’23) Oral Presentation! https://github.com/lin-tan/disguide

• Code language models for binary reverse engineering and decompilation
• LmPa: Improving Decompilation by Synergy of Large Language Model and Program Analysis." arXiv preprint

arXiv:2306.02546 (2023)

https://github.com/lin-tan/clm
https://github.com/lin-tan/knod
https://github.com/lin-tan/CURE
https://github.com/lin-tan/CoCoNut-Artifact
https://github.com/lin-tan/dl-variance
https://github.com/lin-tan/fairness-variance
https://github.com/lin-tan/disguide

Preparation for SoURCE CODE: Datasets and Tools
• Datasets:

• Google Code Jam: coding competitions. source code + binaries
• 293k programs from 29k authors
• Has high-quality labels of authorship and functionality

• Github Dataset: C-language projects on Github with > 10 stars, source code + binaries.
• 106k real-world programs from 2607 authors.

• Malware Dataset: Real-world malware, binaries only
• 7092 malware from 147 author groups (labels from s2-lab[1])

• Tools & Resources:
• Project collection: GHCC (automatically compiles Github repos); VirusTotal, VirusShare (for

malware samples)
• Preprocess: probabilistic disassembly, D-ARM (SOTA disassembler), IDA-based decompilation

pipeline
• Feature Extraction: BDA, Osprey (static analysis); PEM, PMP (dynamic analysis); CodeArt

(semantics encoder); LmPa (symbol reconstruction)
• Data Cleanse: DiEmph (identifying data leakage)

[1] Jason Gray, Daniele Sgandurra, Lorenzo Cavallaro, Identifying Authorship Style in Malicious Binaries: Techniques, Challenges & Datasets, https://s2lab.cs.ucl.ac.uk/projects/authorship/

Preparation for SoURCE CODE: Prior Work
We have a number of prior works on identifying origins of binary executables, with SOTA results

• Improving Binary Code Similarity Transformer Models by Semantics-Driven Instruction Deemphasis (ISSTA’23)

Transformer

Model

A Pair of

Binary Functions

Transformer

Model

<0.03, 0.05, … , -0.01>

<0.06, -0.02, … , -0.3>

Embedding

Embedding

Cosine Similarity

endbr64
; saves the old
value of rbp
push rbx
; use rbp-0x8
to store n
mov rbx, rdi
...
call malloc
if (rax==0 && rbx!=0)

; saves the old
 value of rbx
push rcx
; use rbx to store n
mov rcx, rsi
…
call malloc
if (rax==0 && rbx!=0)

Dissimilar

By fine-tuning pre-trained models to remove the biases (e.g., by
compilers), we improve the SOTA results from 0.37 PR@1 to 0.51 PR@1

Preparation for SoURCE CODE: Prior Work
We have a number of prior works on identifying origins of binary executables, with SOTA results

• PEM: Representing Binary Program Semantics for Similarity Analysis via A Probabilistic Execution Model (FSE’23)
• When symbols are not available, it is difficult to understand the meaning of code by reading the code
• We propose to ``execute’’ the code and then understand its meaning by the observed values

We achieve 0.96 PR@1, outperforming the SOTA of analysis based origin
identification technique, which has 0.77 PR@1

Preparation for SoURCE CODE: Our Direction
and Preliminary Results

• We will explore the interplay between advanced program analysis,
code language models, and novel embedding and pre-training
methods

• Our preliminary results on the aforementioned datasets are promising,
outperforming existing work [1] in identifying authors of unknown
binaries

[1] Caliskan, Aylin, Fabian Yamaguchi, Edwin Dauber, Richard Harang, Konrad Rieck, Rachel
Greenstadt, and Arvind Narayanan. "When coding style survives compilation: De-anonymizing
programmers from executable binaries." NDSS2018

	Slide 1
	Slide 2: Introduction
	Slide 3: Our Expertise in Binary/Malware Analysis
	Slide 4: Our Expertise in Code Language Models (CLMs) and Source Code Analysis
	Slide 5: Preparation for SoURCE CODE: Datasets and Tools
	Slide 6: Preparation for SoURCE CODE: Prior Work
	Slide 7: Preparation for SoURCE CODE: Prior Work
	Slide 8: Preparation for SoURCE CODE: Our Direction and Preliminary Results

