IARPA SOLSTICE Proposers Day **Next-generation Microconcentrating Photovoltaic Arrays for Space Power Systems**

Dr. Seth Hubbard Rochester Institute of Technology Dr. Chris Giebink University of Michigan Dr. Brent Fisher

HNU Systems (formerly X-Celeprint/Semprius)

The case for CPV in space

Low concentration

Failed in orbit

•

| 2

the same form factor as

a traditional CIC

Team Capabilities

- Micro-concentrating optics design and manufacturing
- Multijunction Cell Design, Epitaxy & Fabrication
- Microtransfer Printing
- Team members:
 - RIT: extensive history in the modeling, development, growth, fabrication, and testing of radiation-hard space photovoltaics
 - UM: expertise in optical concentrator design, optics fabrication, µCPV integration, and system measurement
 - XLP: expertise interconnecting large scale µcell arrays using industrial scale transfer printing equipment

Microconcentrating photovoltaics (µCPV)

- Multi-junction III-V micro solar cells
- Transfer-printed and interconnected on rad hard coverglass
- Bonded to ultrathin, reflective lenslet array
- 20-100X concentration with >10° acceptance angle

Monolithic, thin, lightweight, same materials & construction as a legacy CIC

What is possible: >38% and 400 W/kg

- Shrink to smaller cells
- Eliminate parasitic optical loss
- Increase µcell efficiency
- Add local cell shielding

μCPV evolution ¹ predicted by modeling

C. J. Ruud, J. M. Gordon, and N. C. Giebink, *Joule*, 2023.

RIT III-V Solar Capability

- Epitaxy of III-V compounds of As, P and Sb
 - State of the art in-situ diagnostics, temperature, stress, strain and surface roughness, full complement of ex-situ characterization tools and device fabrication
 - Proven solar cell capability

RIT

NanoPower Research Laboratories

https://www.rit.edu/research/rit-epicenter

S. J. Polly ... S. M Hubbard, et al. *Cell Reports Physical Science*, 2023

RIT

NanoPower Research Laboratories

III-V Fabrication and Characterization

III-V Processing technology

- Wet/Dry Etching, lithography
- Dedicated III-V metallization tools
- Annealing furnace up to 150mm

Characterization

- TS Space systems 300 mm close-match solar simulator
- Bruker D8 HRXRD and XRR, Veeco D3100 AFM/STM
- Agilent B1500 Parametric Analyzer
- Cascade RF probe station
- Optronics and Newport spectral response
- Janis cryogenic (2K) probe station
- Photoluminescence and Photo-reflectance
- DLTS, FTIR, Raman, Hall
- Hitachi FE-SEM and Zeiss LEO SEM

Transfer Printing for Heterogeneous Material Integration

A means for integrating material and device structures onto non-native substrates

- Elastomeric stamp (PDMS) is brought into contact with target material,
- As stamp is peeled off, target material is removed from donor substrate
- Patterned stamp is placed in contact with final substrate. Target material remains on final substrate.
- Adhesion between target material, stamp, and final substrate is controlled by peeling rates
 - Fast peeling: picks up target material from donor substrate
 - Slow peeling: releases target material from stamp

Prior efforts by NRL/Semprius gave close to WR efficiency!

	lsc (mA)	Voc	FF (%)	Eff	4T Eff est.
	30.0	0.458	65.0	2.64%	44.14%
-	20.2	0.440	65.7	2.57%	44.07%
	9.7	0.389	69.2	2.39%	43.89%

RIT **RIT Transfer Printing Capability** NanoPower Laboratories

- New transfer printing system recently installed at RIT, can work with X-Celeprint for prototyping, tech transfer and scaling
- We have demonstrate hybrid and heterogeneous integration of III-V and LiNbO₃ with Si-based PICs materials to benefit higher performance phased array systems
- Currently working on III-V based solar cell process

Research

Summary

- µCPV has the potential to outperform CIC designs along several metrics
 - Transfer printing and cell stacking allows access to optimized bandgaps without strained buffer layers, enabling ove 40% AM0 cell efficiency at BOL.
 - Integrated optics and micro-cell design enables highly efficient use of the grown photovoltaic cell, reducing semiconductor cost per Watt.
 - Improved EOL efficiency with up to 10 × more shielding than a CIC without incurring a significant mass penalty.
 - Electrical interconnections and geometry within a µCPV array can be freely configured, enables more efficient packing on a space wing as well as a much greater range of voltages achievable than a CIC design.
- Team has strengths and prior background in PV and optics as well as transfer printing
- Longstanding collaborations with potential Testing & Evaluation partners at Naval Research Lab and NASA Glenn Research Center

RII NanoPower Research Laboratories

