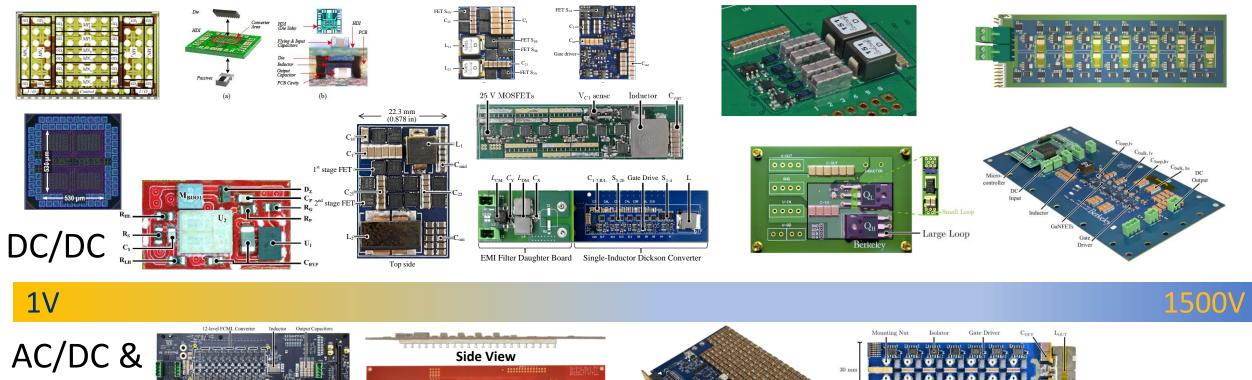
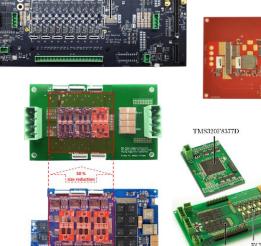
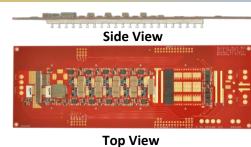
Extreme Density Power Electronics for Space and Solar Photovoltaic Applications

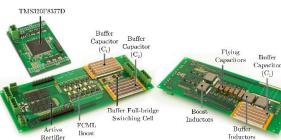
Robert Pilawa-Podgurski, Professor Director, Berkeley Power and Energy Center (BPEC), bpec.berkeley.edu University of California, Berkeley <u>pilawa@berkeley.edu</u> pilawa-group.berkeley.edu

Acknowledgments

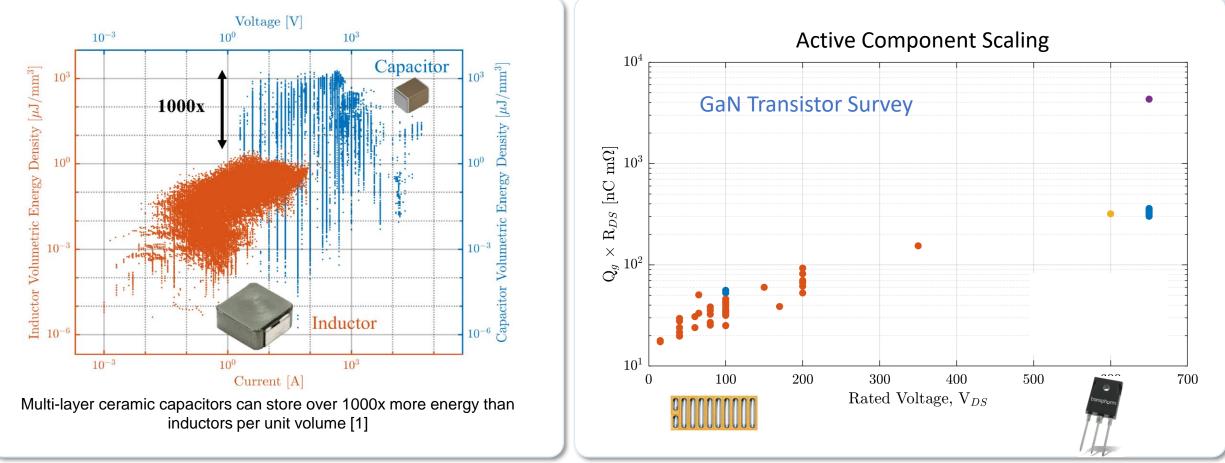

Breadth of Applications


3D Printed Air Inlet Baffle


pannaas (pannas) ennina janaan jannan janna janaan janaan janaan


0-80 SMT M

DC/AC



Extreme Density Power Converters

- Our group specializes in high-density, high-efficiency power converters
 - Exploit superior power density of capacitors compared to inductors
 - Leverage advantageous scaling of low-voltage semiconductors (GaN and Si)

[1] J. Zou et al., "On the size and weight of passive components: scaling trends for high density power converter designs", COMPEL 2022

Low Voltage DC-DC Solutions

	Cascaded Resonant 10 switch [1]		Cas		eries-Parallel ,3]		Two-Stage Cascaded [4]		Multi-Level Binary [5]		Switching Bus [6]			
		H												
Peak syste efficience				98.5%		98.	98.0%		97.0%		94.4%		92.7%	
48 V to	o	12	V	8	V	6	V	4	V	1.8	V	1	.0 V	
Power den by box volu		5000 \	W/in ³	2230	W/in ³	2140	W/in ³	1154	W/in ³	474 V	V/in ³	759	W/in ³	
	← Unregulated						→ Regulated →							

[1] T. Ge, Z. Ye and R. C. N. Pilawa-Podgurski, "Geometrical State-Plane Analysis of Resonant Switched-Capacitor Converters: Demonstration on the Cascaded Multiresonant Converter," in *IEEE Transactions on Power Electronics*, vol. 38, no. 9, pp. 11125-11140, Sept. 2023.

[2] R. A. Abramson, Z. Ye and R. C. N. Pilawa-Podgurski, "A High Performance 48-to-8 V Multi-Resonant Switched-Capacitor Converter for Data Center Applications," 2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe), 2020.

[3] R. Abramson, Z. Ye, R.C.N. Pilawa-Podgurski, "A High Performance 48-to-6 V Multi-Resonant Cascaded Series-Parallel Switched-Capacitor Converter", *IEEE Applied Power Electronics Conference and Exposition (APEC)*, 2021.
[4] W.C. Liu, Z. Ye, R.C.N. Pilawa-Podgurski, "A 97% Peak Efficiency and 308 A/in³ Current Density 48-to-4 V Two-Stage Resonant Switched-Capacitor Converter for Data Center Applications" *IEEE Applied Power Electronics Conference and Exposition (APEC)*, 2021.
[5] R. Abramson, Z. Ye, R.C.N. Pilawa-Podgurski, "A 97% Peak Efficiency and 308 A/in³ Current Density 48-to-4 V Two-Stage Resonant Switched-Capacitor Converter for Data Center Applications" *IEEE Applied Power Electronics Conference and Exposition (APEC)*, 2020.

[5] T. Ge, R. Abramson, Z. Ye and R. C. N. Pilawa-Podgurski, "Core Size Scaling Law of Two-Phase Coupled Inductors – Demonstration in a 48-to-1.8 V Hybrid Switched-Capacitor MLB-PoL Converter," 2022 IEEE Applied Power Electronics Conference and Exposition (APEC), Houston, TX, USA, 2022.

[6] Y. Zhu, J. Zou, R.C.N. Pilawa-Podgurski, "A 1500-A/48-V-to-1-V Switching Bus Converter for Next-Generation Ultra-High-Power Microprocessors", IEEE Applied Power Electronics Conference and Exposition (APEC), 2024.

Performance of 48-to-12 V Cascaded ReSC

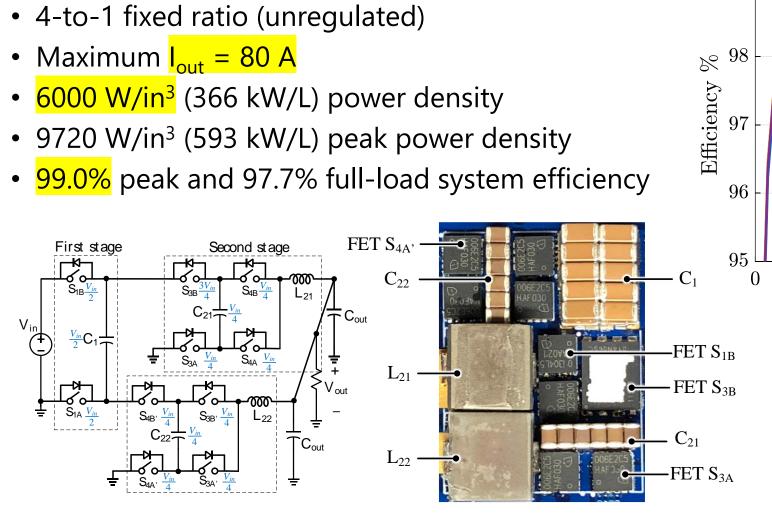
Measured system efficiency

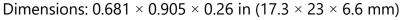
40

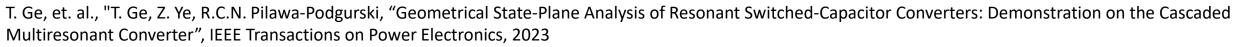
Output current (A)

20

∕87.6 ^{°c}

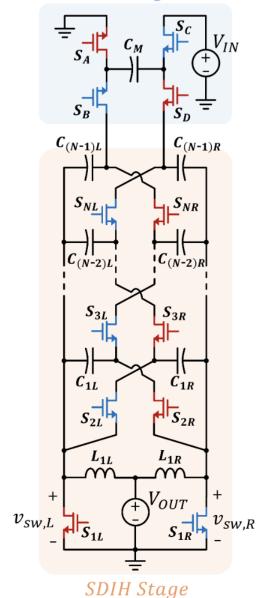

 $-V_{in} = 40$ V and $f_{sw} = 130$ kHz

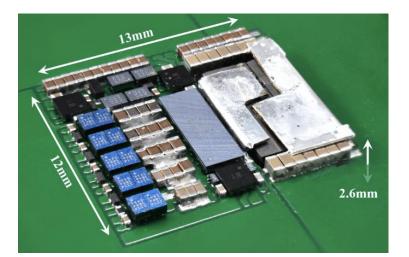

 $-V_{in} = 48$ V and $f_{sw} = 130$ kHz


 $-V_{in} = 54$ V and $f_{sw} = 135$ kHz $-V_{in} = 60$ V and $f_{sw} = 140$ kHz

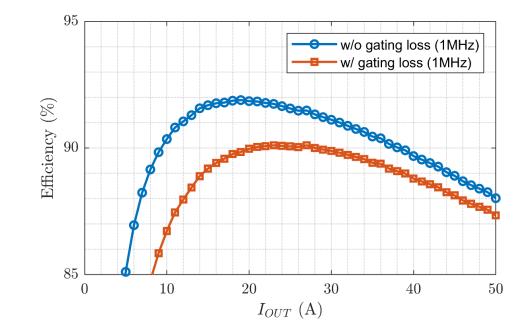
60

80



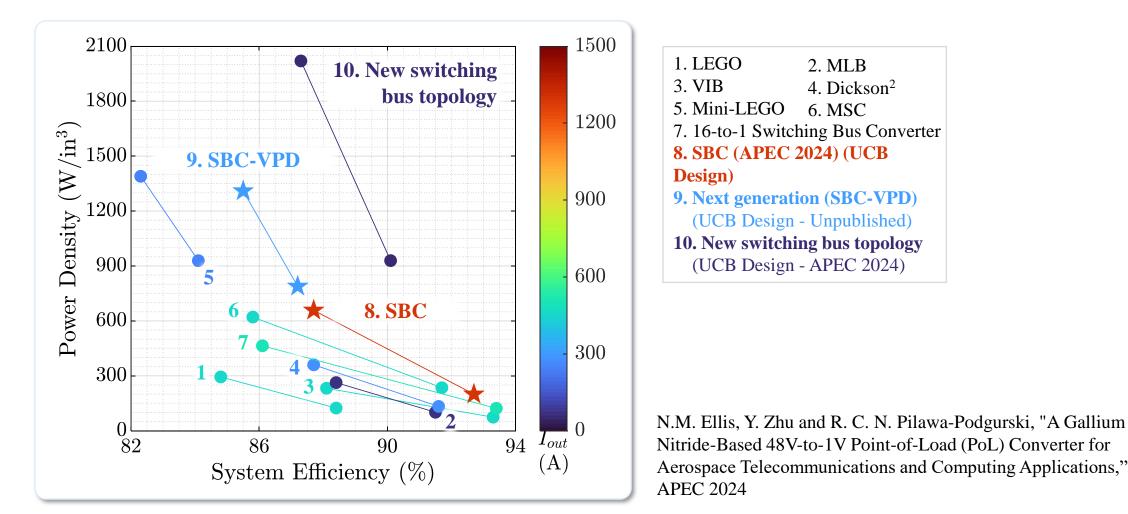

99

48V to 1V – Rad Hard GaN Solution



2:1 Stage

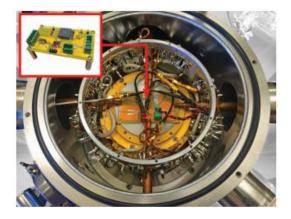
V _{IN} :	48V					
OUT:	1V					
DUT:	0 – 50A					
SW ¹	1MHz					
nsity:	2,020W/inch ³					
out: sw:	0 – 50A 1MHz					



50W output power, 1.58 grams [31.6 kW/kg]

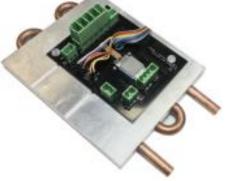
Performance Comparison

- Performance comparison with the state-of-the-art 48-V-to-1-V hybrid SC works
 - Loss and volume of the gate drive circuitry are included in efficiency and power density calculations



Applications and Environments

- Experience in Solar PV DC-DC and DC-AC Power Converter
- Space rated power electronics, industry and NASA JPL collaborations
- Flight qualified hardware prototypes – ARPA-E
- Extreme environment cryocooled power converters



BPEC Berkeley Power & Energy Center